
Robustness against read committed:
a free transactional lunch

Frank Neven

UHasselt, Data Science Institute, ACSL

PODS 2022

Medieval town of Gruyères

Picture from Tripadvisor

F. Neven Robustness against MVRC 1 / 54

Concurrent transactions & Swiss cheese fondue @Gruyères

Bas Ketsman
Vrije Universiteit Brussel

Christoph Koch
EPFL

Brecht Vandevoort
Universiteit Hasselt

F. Neven Robustness against MVRC 2 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Outline

1 Database Concurrency Control (101)
Serializability
Isolation Levels
Robustness

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Database transactions: concurrent access to data
A balancing act

Higher throughput
High number of
possible data anomaly
types

N
o

Is
ol

at
io

n

R
ea

d
C

om
m

it
te

d
R

ep
ea

ta
bl

e
R

ea
d

S
er

ia
liz

ab
le

Isolation Level

Lower throughput
Low number of
possible data anomaly
types

Free lunch: given more knowledge on workload, can you choose a lower
isolation level but still have maximal data consistency?

F. Neven Robustness against MVRC 3 / 54

Database transactions: concurrent access to data
A balancing act

Higher throughput
High number of
possible data anomaly
types

N
o

Is
ol

at
io

n

R
ea

d
C

om
m

it
te

d
R

ep
ea

ta
bl

e
R

ea
d

S
er

ia
liz

ab
le

Isolation Level

Lower throughput
Low number of
possible data anomaly
types

Free lunch: given more knowledge on workload, can you choose a lower
isolation level but still have maximal data consistency?

F. Neven Robustness against MVRC 3 / 54

Database transactions: concurrent access to data
A balancing act

Higher throughput
High number of
possible data anomaly
types

N
o

Is
ol

at
io

n

R
ea

d
C

om
m

it
te

d
R

ep
ea

ta
bl

e
R

ea
d

S
er

ia
liz

ab
le

Isolation Level

Lower throughput
Low number of
possible data anomaly
types

Free lunch: given more knowledge on workload, can you choose a lower
isolation level but still have maximal data consistency?

F. Neven Robustness against MVRC 3 / 54

Data inconsistency

Transaction 1

Transaction 2

Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350
Commit

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Data inconsistency

Transaction 1

Transaction 2

Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350
Commit

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Data inconsistency

Transaction 1

Transaction 2

Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350 A = e350
Commit B = e500

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Data inconsistency

Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350
Commit

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Data inconsistency

Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350
Commit

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Data inconsistency

Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

Set A = e0 A = e0
Set B = e900 B = e900

Commit

Set A = e350 A = e350
Commit B = e900

→ Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4 / 54

Outline

1 Database Concurrency Control (101)
Serializability
Isolation Levels
Robustness

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Serializability: holy grail for data consistency

Executions that leave the data in a consistent state

Definition

A schedule is serializable if its outcome is equivalent to that of a serial
schedule (with the same transactions).

Rationale: if each transaction is correct by itself, then a schedule that
comprises any serial execution of these transactions is correct.

Outcome is not equivalent to

• T1;T2: A = −50, B = 900, or,

• T2;T1: A = −50, B = 900.

F. Neven Robustness against MVRC 5 / 54

Serializability: holy grail for data consistency

Executions that leave the data in a consistent state

Definition

A schedule is serializable if its outcome is equivalent to that of a serial
schedule (with the same transactions).

Rationale: if each transaction is correct by itself, then a schedule that
comprises any serial execution of these transactions is correct.

Outcome is not equivalent to

• T1;T2: A = −50, B = 900, or,

• T2;T1: A = −50, B = 900.

F. Neven Robustness against MVRC 5 / 54

Concurrency control methods that guarantee serializability
Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

• Regulate access through shared (read) and exclusive (write) locks.
• R-locks on the same object do not conflict, other combinations do
• Before an operation a corresponding lock needs to be acquired. If there

is a conflict the acquiring party needs to wait.

• Two phases:
• Growing: lock acquiring phase, no locks are released
• Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 / 54

Concurrency control methods that guarantee serializability
Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

• Regulate access through shared (read) and exclusive (write) locks.

• R-locks on the same object do not conflict, other combinations do
• Before an operation a corresponding lock needs to be acquired. If there

is a conflict the acquiring party needs to wait.

• Two phases:
• Growing: lock acquiring phase, no locks are released
• Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 / 54

Concurrency control methods that guarantee serializability
Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

• Regulate access through shared (read) and exclusive (write) locks.
• R-locks on the same object do not conflict, other combinations do

• Before an operation a corresponding lock needs to be acquired. If there
is a conflict the acquiring party needs to wait.

• Two phases:
• Growing: lock acquiring phase, no locks are released
• Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 / 54

Concurrency control methods that guarantee serializability
Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

• Regulate access through shared (read) and exclusive (write) locks.
• R-locks on the same object do not conflict, other combinations do
• Before an operation a corresponding lock needs to be acquired. If there

is a conflict the acquiring party needs to wait.

• Two phases:
• Growing: lock acquiring phase, no locks are released
• Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 / 54

Concurrency control methods that guarantee serializability
Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

• Regulate access through shared (read) and exclusive (write) locks.
• R-locks on the same object do not conflict, other combinations do
• Before an operation a corresponding lock needs to be acquired. If there

is a conflict the acquiring party needs to wait.

• Two phases:
• Growing: lock acquiring phase, no locks are released
• Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Two phase locking
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

R-lock(A). Read(A)

Compute new value

R-lock(A). Read(A)

R-lock(B). Read(B)

Compute new values

W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput

• Waiting on release of locks

• Aborts to resolve deadlocks

F. Neven Robustness against MVRC 7 / 54

Multiversion concurrency control (MVCC)

Multiversion

• DBMS maintains multiple versions of an object
• e.g., achieved through timestamps

• When reading an object
• no longer blocked by concurrent writer
• an earlier version can be supplied

F. Neven Robustness against MVRC 8 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot
• Snapshot Isolation: at commit time, check whether concurrent

transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
• Guarantees serializability, but has a negative effect on throughput:

• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot

• Snapshot Isolation: at commit time, check whether concurrent
transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
• Guarantees serializability, but has a negative effect on throughput:

• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot
• Snapshot Isolation: at commit time, check whether concurrent

transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
• Guarantees serializability, but has a negative effect on throughput:

• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot
• Snapshot Isolation: at commit time, check whether concurrent

transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
• Guarantees serializability, but has a negative effect on throughput:

• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot
• Snapshot Isolation: at commit time, check whether concurrent

transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.

• Guarantees serializability, but has a negative effect on throughput:
• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

Concurrency control methods that guarantee serializability
Optimistic concurrency control

Serializable snapshot isolation

• Crux:
• Transaction takes a snapshot of the data at start time and makes

tentative changes on the snapshot
• Snapshot Isolation: at commit time, check whether concurrent

transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

• Serializable SI: additional dangerous structure check

• Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
• Guarantees serializability, but has a negative effect on throughput:

• performing checks,
• possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 / 54

(Serializable) Snapshot Isolation
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Take snapshot

Get balance A→ e400

Take snapshot

Get balance A→ e400
Get balance B → e500

Set A = e0, Set
B = e900

Commit
A = e0,

B = e900
Set A = e350

Commit → ABORT

F. Neven Robustness against MVRC 10 / 54

(Serializable) Snapshot Isolation
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Take snapshot

Get balance A→ e400

Take snapshot

Get balance A→ e400
Get balance B → e500

Set A = e0, Set
B = e900

Commit
A = e0,

B = e900

Set A = e350
Commit → ABORT

F. Neven Robustness against MVRC 10 / 54

(Serializable) Snapshot Isolation
Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Take snapshot

Get balance A→ e400

Take snapshot

Get balance A→ e400
Get balance B → e500

Set A = e0, Set
B = e900

Commit
A = e0,

B = e900
Set A = e350

Commit → ABORT

F. Neven Robustness against MVRC 10 / 54

Outline

1 Database Concurrency Control (101)
Serializability
Isolation Levels
Robustness

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Isolation level defines a superset of serializable schedules
Trading consistency for increased throughput

Postgress

1 READ COMMITTED:
• read last committed version (no locking)
• a write statement acquires W-lock (released at commit)
• deadlock → aborts

2 REPEATABLE READ (aka SNAPSHOT ISOLATION)

3 SERIALIZABLE (aka SERIALIZABLE SNAPSHOT ISOLATION)

https://www.postgresql.org/docs/current/transaction-iso.html

F. Neven Robustness against MVRC 11 / 54

https://www.postgresql.org/docs/current/transaction-iso.html

Isolation level defines a superset of serializable schedules
Trading consistency for increased throughput

Postgress

1 READ COMMITTED:
• read last committed version (no locking)
• a write statement acquires W-lock (released at commit)
• deadlock → aborts

2 REPEATABLE READ (aka SNAPSHOT ISOLATION)

3 SERIALIZABLE (aka SERIALIZABLE SNAPSHOT ISOLATION)

https://www.postgresql.org/docs/current/transaction-iso.html

F. Neven Robustness against MVRC 11 / 54

https://www.postgresql.org/docs/current/transaction-iso.html

Schedule for bank example is allowed under RC
but not under SI

Transaction 1 Transaction 2 Accounts

Withdraw e50 from
account A

Transfer e400 from
account A to B

A = e400
B = e500

Get balance A→ e400

Compute new value

Get balance A→ e400
Get balance B → e500

Compute new values

W-lock(A) Set A = e0 A = e0
W-lock(B) Set B = e900 B = e900
Commit. Release locks

W-lock(A)

Set A = e350 A = e350
Commit B = e900

F. Neven Robustness against MVRC 12 / 54

Non-serializable bank example allowed under SI

Allowed under SI

• Account A = e600; Account B = e700.

• TA : Withdraw e500 from account A if sum A+B > e1000

• TB : Withdraw e500 from account B if sum A+B > e1000

• Serial execution:
• TA;TB : A = e100; B = e700
• TB ;TA: A = e600; B = e200

• Concurrent execution under SI: A = e100; B = e200

F. Neven Robustness against MVRC 13 / 54

Non-serializable bank example allowed under SI

Allowed under SI

• Account A = e600; Account B = e700.

• TA : Withdraw e500 from account A if sum A+B > e1000

• TB : Withdraw e500 from account B if sum A+B > e1000
• Serial execution:

• TA;TB : A = e100; B = e700
• TB ;TA: A = e600; B = e200

• Concurrent execution under SI: A = e100; B = e200

F. Neven Robustness against MVRC 13 / 54

Non-serializable bank example allowed under SI

Allowed under SI

• Account A = e600; Account B = e700.

• TA : Withdraw e500 from account A if sum A+B > e1000

• TB : Withdraw e500 from account B if sum A+B > e1000
• Serial execution:

• TA;TB : A = e100; B = e700
• TB ;TA: A = e600; B = e200

• Concurrent execution under SI: A = e100; B = e200

F. Neven Robustness against MVRC 13 / 54

What about a free lunch?

Under which conditions, do isolation levels weaker than serializability,
provide the same guarantees as serializability?

F. Neven Robustness against MVRC 14 / 54

Outline

1 Database Concurrency Control (101)
Serializability
Isolation Levels
Robustness

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Robustness
Assume an isolation level I is chosen for a given workload T :

Workload T

T1 :

T2 :

T3 :

a b c

a b

a b c d

Possible executions under I

a a b a c b d b c

a a a b b c c d b

a b a b c a b c d

· · ·

Are all these
executions

serializable?

⇒ Workload T is robust against isolation level I.

Robustness

• guarantees serializability under a lower isolation level

• expected higher throughput

F. Neven Robustness against MVRC 15 / 54

Robustness
Assume an isolation level I is chosen for a given workload T :

Workload T

T1 :

T2 :

T3 :

a b c

a b

a b c d

Possible executions under I

a a b a c b d b c

a a a b b c c d b

a b a b c a b c d

· · ·

Are all these
executions

serializable?

⇒ Workload T is robust against isolation level I.

Robustness

• guarantees serializability under a lower isolation level

• expected higher throughput

F. Neven Robustness against MVRC 15 / 54

Robustness
Assume an isolation level I is chosen for a given workload T :

Workload T

T1 :

T2 :

T3 :

a b c

a b

a b c d

Possible executions under I

a a b a c b d b c

a a a b b c c d b

a b a b c a b c d

· · ·

Are all these
executions

serializable?

⇒ Workload T is robust against isolation level I.

Robustness

• guarantees serializability under a lower isolation level

• expected higher throughput

F. Neven Robustness against MVRC 15 / 54

Robustness
Assume an isolation level I is chosen for a given workload T :

Workload T

T1 :

T2 :

T3 :

a b c

a b

a b c d

Possible executions under I

a a b a c b d b c

a a a b b c c d b

a b a b c a b c d

· · ·

Are all these
executions

serializable?

⇒ Workload T is robust against isolation level I.

Robustness

• guarantees serializability under a lower isolation level

• expected higher throughput

F. Neven Robustness against MVRC 15 / 54

Robustness
Assume an isolation level I is chosen for a given workload T :

Workload T

T1 :

T2 :

T3 :

a b c

a b

a b c d

Possible executions under I

a a b a c b d b c

a a a b b c c d b

a b a b c a b c d

· · ·

Are all these
executions

serializable?

⇒ Workload T is robust against isolation level I.

Robustness

• guarantees serializability under a lower isolation level

• expected higher throughput

F. Neven Robustness against MVRC 15 / 54

TPC-C is robust against SNAPSHOT ISOLATION
[Fekete et al., 2005]

TPC-C

• is a complex benchmark dealing with
most aspects of ordering, paying for,
and delivering of goods from
warehouses.

• consists of nine tables and five
transaction programs.

Transaction Programs:

• NewOrder

• StockLevel

• Payment

• OrderStatus

• Delivery

Robustness

Every workload resulting from instantiations of the transaction programs is
serializable when executed under SNAPSHOT ISOLATION.

F. Neven Robustness against MVRC 16 / 54

Work on robustness

[Fekete et al., 2005] [Fekete, 2005] [Alomari et al., 2008] [Alomari and Fekete, 2015]

[Bernardi and Gotsman, 2016] [Cerone et al., 2017] [Cerone and Gotsman, 2018]

[Beillahi et al., 2019a] [Beillahi et al., 2019b]

Research on robustness. . .

• . . . mostly focused on higher isolation levels (e.g. variations of
Snapshot Isolation);

• . . . mostly focused on sufficient conditions to guarantee robustness.

However, lower isolation levels are used in practice as well:

• RC is the default isolation level in certain databases (e.g. Postgres)
[Bailis et al., 2013].

• Focus on RC (and SI) in the rest of this talk
[Ketsman et al., 2020, Vandevoort et al., 2021, Vandevoort et al., 2022]

F. Neven Robustness against MVRC 17 / 54

Work on robustness

[Fekete et al., 2005] [Fekete, 2005] [Alomari et al., 2008] [Alomari and Fekete, 2015]

[Bernardi and Gotsman, 2016] [Cerone et al., 2017] [Cerone and Gotsman, 2018]

[Beillahi et al., 2019a] [Beillahi et al., 2019b]

Research on robustness. . .

• . . . mostly focused on higher isolation levels (e.g. variations of
Snapshot Isolation);

• . . . mostly focused on sufficient conditions to guarantee robustness.

However, lower isolation levels are used in practice as well:

• RC is the default isolation level in certain databases (e.g. Postgres)
[Bailis et al., 2013].

• Focus on RC (and SI) in the rest of this talk
[Ketsman et al., 2020, Vandevoort et al., 2021, Vandevoort et al., 2022]

F. Neven Robustness against MVRC 17 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions
Snapshot Isolation
Multiversion Read Committed

3 Robustness for Transaction Templates

4 Conclusions

Transactions

Set T of transactions

T1 : R1[x] W1[y] C1

T2 : R2[z] W2[x] W2[z] C2

T3 : R3[y] W3[z] C3

• assumption:
• subscripting operations with the index number of the transaction
• transaction reads and writes at most once the same object

• simplistic model

F. Neven Robustness against MVRC 18 / 54

Schedules

Schedule (history) s over T

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

• total order <s on operations in T
• <s is consistent with ordering of the operations in transactions in T

• maps every read operation to a write operation

• initial value x0, y0, z0 for each object x, y, z

F. Neven Robustness against MVRC 19 / 54

Schedules

Schedule (history) s over T

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

• total order <s on operations in T
• <s is consistent with ordering of the operations in transactions in T
• maps every read operation to a write operation

• initial value x0, y0, z0 for each object x, y, z

F. Neven Robustness against MVRC 19 / 54

Schedules

Schedule (history) s over T

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y0]W3[z]C3

• total order <s on operations in T
• <s is consistent with ordering of the operations in transactions in T
• maps every read operation to a write operation

• initial value x0, y0, z0 for each object x, y, z

F. Neven Robustness against MVRC 19 / 54

Towards serializability

Definition

A schedule is serializable iff it is conflict-equivalent to a single-version
serial schedule.

• Serial: schedule that executes transactions in a serial fashion.

• Single-version: only one installed version at the time.

• Several flavors of schedule equivalence: focus on conflict-equivalence.

Definition

Two operations are conflicting if they are on the same object, and at
least one of them is a write.

F. Neven Robustness against MVRC 20 / 54

Towards serializability

Definition

A schedule is serializable iff it is conflict-equivalent to a single-version
serial schedule.

• Serial: schedule that executes transactions in a serial fashion.

• Single-version: only one installed version at the time.

• Several flavors of schedule equivalence: focus on conflict-equivalence.

Definition

Two operations are conflicting if they are on the same object, and at
least one of them is a write.

F. Neven Robustness against MVRC 20 / 54

From conflicts to dependencies relative to a schedule s
• T → T ′ iff T accesses x, later T ′ accesses x, and the accesses conflict
• induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

Conflict Graph CG(s)

T1 :R1[x0]W1[y]C1

T2 :R2[z0]W2[x]W2[z]C2

T3 :R3[y1]W3[z]C3

(T : b)→ (T ′ : a):

• write-write dependency

: b is ww-conflicting with a and b <s a

• write-read dependency

• read-write (anti-)dependency

: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
• T → T ′ iff T accesses x, later T ′ accesses x, and the accesses conflict
• induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

Conflict Graph CG(s)

T1 :R1[x0]W1[y]C1

T2 :R2[z0]W2[x]W2[z]C2

T3 :R3[y1]W3[z]C3

(T : b)→ (T ′ : a):

• write-write dependency: b is ww-conflicting with a and b <s a

• write-read dependency

• read-write (anti-)dependency

: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
• T → T ′ iff T accesses x, later T ′ accesses x, and the accesses conflict
• induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

Conflict Graph CG(s)

T1 :R1[x0]W1[y]C1

T2 :R2[z0]W2[x]W2[z]C2

T3 :R3[y1]W3[z]C3

(T : b)→ (T ′ : a):

• write-write dependency

: b is ww-conflicting with a and b <s a

• write-read dependency: b is wr-conflicting with a, and a reads the
version written by b (or later)

• read-write (anti-)dependency

: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
• T → T ′ iff T accesses x, later T ′ accesses x, and the accesses conflict
• induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

Conflict Graph CG(s)

T1 :R1[x0]W1[y]C1

T2 :R2[z0]W2[x]W2[z]C2

T3 :R3[y1]W3[z]C3

(T : b)→ (T ′ : a):

• write-write dependency

: b is ww-conflicting with a and b <s a

• write-read dependency

• read-write (anti-)dependency: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s

• T → T ′ iff T accesses x, later T ′ accesses x, and the accesses conflict

• induces a relative ordering of transactions in a serial schedule that
preserves the order of conflicts

Schedule s

(T1) R1[x0] W1[y]C1
(T2) R2[z0] W2[x] W2[z]C2
(T3) R3[y1]W3[z]C3

Conflict Graph CG(s)

T1

T2

T3

(T : b)→ (T ′ : a):

• write-write dependency

: b is ww-conflicting with a and b <s a

• write-read dependency

• read-write (anti-)dependency

: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

Conflict serializability

Definition

Two schedules s and s′ are conflict-equivalent iff CG(s) = CG(s′).

Definition

A schedule s over T is (conflict) serializable iff it is conflict-equivalent to
a single-version serial schedule.

Theorem (e.g.,[Papadimitriou, 1986])

A schedule s over T is conflict serializable iff CG(s) is acyclic.

F. Neven Robustness against MVRC 22 / 54

Conflict serializability

Definition

Two schedules s and s′ are conflict-equivalent iff CG(s) = CG(s′).

Definition

A schedule s over T is (conflict) serializable iff it is conflict-equivalent to
a single-version serial schedule.

Theorem (e.g.,[Papadimitriou, 1986])

A schedule s over T is conflict serializable iff CG(s) is acyclic.

F. Neven Robustness against MVRC 22 / 54

Conflict serializability

Definition

Two schedules s and s′ are conflict-equivalent iff CG(s) = CG(s′).

Definition

A schedule s over T is (conflict) serializable iff it is conflict-equivalent to
a single-version serial schedule.

Theorem (e.g.,[Papadimitriou, 1986])

A schedule s over T is conflict serializable iff CG(s) is acyclic.

F. Neven Robustness against MVRC 22 / 54

Robustness against an isolation level I

Definition

A set of transactions T is robust against I iff
every schedule for T that is allowed under I is serializable.

All schedules
over T

Schedules
allowed
under I

Conflict
serializable
schedules

Schedule s allowed under I,
but not conflict serializable

Case 2:
T is robust against I

Case 1:
T is not robust against I

F. Neven Robustness against MVRC 23 / 54

Robustness against an isolation level I

Definition

A set of transactions T is robust against I iff
every schedule for T that is allowed under I is serializable.

All schedules
over T

Schedules
allowed
under I

Conflict
serializable
schedules

Schedule s allowed under I,
but not conflict serializable

Case 2:
T is robust against I

Case 1:
T is not robust against I

F. Neven Robustness against MVRC 23 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions
Snapshot Isolation
Multiversion Read Committed

3 Robustness for Transaction Templates

4 Conclusions

Snapshot isolation

• rset(T): set of objects read in transaction T

• wset(T): set of modified objects in transaction T

Snapshot Isolation (SI)

A schedule is allowed under SI iff

• every read operation refers to the last committed version before the
start of the current transaction.

• First Committer Wins: a transaction T can not commit if
wset(T) ∩ wset(T ′) 6= ∅ for any transaction T ′ concurrent with T .

F. Neven Robustness against MVRC 24 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SI:

• T →ww T ′: T finishes before T ′ starts

• T →wr T ′: T finishes before T ′ starts

Observation

There can be not be a cycle in the CG of a schedule in SI containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 finishes before T1 starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SI:

• T →ww T ′: T finishes before T ′ starts

• T →wr T ′: T finishes before T ′ starts

Observation

There can be not be a cycle in the CG of a schedule in SI containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 finishes before T1 starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SI:

• T →ww T ′: T finishes before T ′ starts

• T →wr T ′: T finishes before T ′ starts

Observation

There can be not be a cycle in the CG of a schedule in SI containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 finishes before T1 starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SI:

• T →ww T ′: T finishes before T ′ starts

• T →wr T ′: T finishes before T ′ starts

Observation

There can be not be a cycle in the CG of a schedule in SI containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 finishes before T1 starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SI:

• T →ww T ′: T finishes before T ′ starts

• T →wr T ′: T finishes before T ′ starts

Observation

There can be not be a cycle in the CG of a schedule in SI containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 finishes before T1 starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

A cycle in CG(s) must contain at least one rw-dependency.

Theorem ([Fekete, 2005])

If s in SI is not serializable, then CG(s) contains a chord-free cycle

T → · · · → Ta →rw Tb →rw Tc → · · · → T

where wset(Ta) ∩ wset(Tb) = ∅ and wset(Tb) ∩ wset(Tc) = ∅.

F. Neven Robustness against MVRC 26 / 54

Robustness against SI

Interference Graph IG(T) (static dependency graph)

• Superposition of dependencies for all possible schedules

• Nodes in IG(T) are transactions in T .
• Edges indicate interference between transactions:

1 T1 →e T2 if
• rset(T1) ∩ wset(T2) 6= ∅ and wset(T1) ∩ wset(T2) = ∅
• exposed (vulnerable) edge

2 else, T1 →p T2 if
• at least one transaction writes to a commonly accessed attribute
• protected (non-vulnerable) edge

Property

Let s be a schedule for T allowed under SI,
a cycle in a CG(s) implies a cycle in IG(T).

F. Neven Robustness against MVRC 27 / 54

Robustness against SI

Interference Graph IG(T) (static dependency graph)

• Superposition of dependencies for all possible schedules

• Nodes in IG(T) are transactions in T .
• Edges indicate interference between transactions:

1 T1 →e T2 if
• rset(T1) ∩ wset(T2) 6= ∅ and wset(T1) ∩ wset(T2) = ∅
• exposed (vulnerable) edge

2 else, T1 →p T2 if
• at least one transaction writes to a commonly accessed attribute
• protected (non-vulnerable) edge

Property

Let s be a schedule for T allowed under SI,
a cycle in a CG(s) implies a cycle in IG(T).

F. Neven Robustness against MVRC 27 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005])

A set of transactions T is not robust against SI iff
IG(T) contains a chord-free cycle T · · · → Ta →e Tb →e Tc → · · ·T

Counter example split schedule s

start(Tb) Tb

Tc

· · ·T · · ·
Ta

Requirements

• Tb does not have a ww- or
wr-dependency with any of the
other transactions

• Tb →rw Tc

• Ta →rw Tb

• Tc → · · · → T → · · · → Ta

F. Neven Robustness against MVRC 28 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005])

A set of transactions T is not robust against SI iff
IG(T) contains a chord-free cycle T · · · → Ta →e Tb →e Tc → · · ·T

Counter example split schedule s

start(Tb) Tb

Tc

· · ·T · · ·
Ta

Requirements

• Tb does not have a ww- or
wr-dependency with any of the
other transactions

• Tb →rw Tc

• Ta →rw Tb

• Tc → · · · → T → · · · → Ta

F. Neven Robustness against MVRC 28 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005])

A set of transactions T is not robust against SI iff
IG(T) contains a chord-free cycle T · · · → Ta →e Tb →e Tc → · · ·T

Counter example split schedule s

start(Tb) Tb

Tc

· · ·T · · ·
Ta

Requirements

• Tb does not have a ww- or
wr-dependency with any of the
other transactions

• Tb →rw Tc

• Ta →rw Tb

• Tc → · · · → T → · · · → Ta

F. Neven Robustness against MVRC 28 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions
Snapshot Isolation
Multiversion Read Committed

3 Robustness for Transaction Templates

4 Conclusions

Multiversion read committed

Dirty writes

A schedule exhibits a dirty write if the following occurs:

(Ti) . . . Wi[x] Ci
(Tj) . . . Wj [x] . . .

Multiversion Read Committed (MVRC)

A schedule is allowed under MVRC iff

• it does not exhibit a dirty write, and

• every read operation refers to the most recent committed version

F. Neven Robustness against MVRC 29 / 54

Multiversion read committed

Dirty writes

A schedule exhibits a dirty write if the following occurs:

(Ti) . . . Wi[x] Ci
(Tj) . . . Wj [x] . . .

Multiversion Read Committed (MVRC)

A schedule is allowed under MVRC iff

• it does not exhibit a dirty write, and

• every read operation refers to the most recent committed version

F. Neven Robustness against MVRC 29 / 54

Robustness: SI vs MVRC
We can view an isolation level I as a set of allowed schedules.

Observation

Let I ⊆ J and T as set of transactions:

non-robustness of T against I implies
non-robustness of T against J .

Because of timing of snapshots:

• SI 6⊆ MVRC, and

• MVRC 6⊆ SI

Example

T1 : W1[y]C1

T2 : R2[x0] R2[y]C2

F. Neven Robustness against MVRC 30 / 54

Robustness: SI vs MVRC
We can view an isolation level I as a set of allowed schedules.

Observation

Let I ⊆ J and T as set of transactions:

non-robustness of T against I implies
non-robustness of T against J .

Because of timing of snapshots:

• SI 6⊆ MVRC, and

• MVRC 6⊆ SI

Example

T1 : W1[y]C1

T2 : R2[x0] R2[y]C2

F. Neven Robustness against MVRC 30 / 54

Multiversion read committed

For s a schedule allowed under MVRC:

• T →ww T ′: can be concurrent but T commits before T ′

• T →wr T ′: can be concurrent but T commits before T ′

Observation

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 commits before T1 commits.

F. Neven Robustness against MVRC 31 / 54

Multiversion read committed

For s a schedule allowed under MVRC:

• T →ww T ′: can be concurrent but T commits before T ′

• T →wr T ′: can be concurrent but T commits before T ′

Observation

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 commits before T1 commits.

F. Neven Robustness against MVRC 31 / 54

Multiversion read committed

For s a schedule allowed under MVRC:

• T →ww T ′: can be concurrent but T commits before T ′

• T →wr T ′: can be concurrent but T commits before T ′

Observation

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 commits before T1 commits.

F. Neven Robustness against MVRC 31 / 54

Multiversion read committed

For s a schedule allowed under MVRC:

• T →ww T ′: can be concurrent but T commits before T ′

• T →wr T ′: can be concurrent but T commits before T ′

Observation

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

Indeed, a cycle
T1 → T2 → · · · → Tn → T1

implies that

T1 commits before T1 commits.

F. Neven Robustness against MVRC 31 / 54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021])

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T1
T2
T3
T4

b1
b2a2

a3b3
a4b4

a1a1

• b1 is rw-conflicting with a2, bi is conflicting with ai, b4 is conflicting
with a1

• b1 <T1 a1 or b4 is rw-conflicting with a1; and,

• there is no write operation in prefixb1(T1) ww-conflicting with a write
operation in any of the transactions T2, T3, T4;

F. Neven Robustness against MVRC 32 / 54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021])

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T1
T2
T3
T4

b1
b2a2

a3b3
a4b4

a1a1

• b1 is rw-conflicting with a2, bi is conflicting with ai, b4 is conflicting
with a1

• b1 <T1 a1 or b4 is rw-conflicting with a1; and,

• there is no write operation in prefixb1(T1) ww-conflicting with a write
operation in any of the transactions T2, T3, T4;

F. Neven Robustness against MVRC 32 / 54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021])

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T1
T2
T3
T4

b1
b2a2

a3b3
a4b4

a1a1

• b1 is rw-conflicting with a2, bi is conflicting with ai, b4 is conflicting
with a1

• b1 <T1 a1 or b4 is rw-conflicting with a1; and,

• there is no write operation in prefixb1(T1) ww-conflicting with a write
operation in any of the transactions T2, T3, T4;

F. Neven Robustness against MVRC 32 / 54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021])

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T1
T2
T3
T4

b1
b2a2

a3b3
a4b4

a1a1

• b1 is rw-conflicting with a2, bi is conflicting with ai, b4 is conflicting
with a1

• b1 <T1 a1 or b4 is rw-conflicting with a1; and,

• there is no write operation in prefixb1(T1) ww-conflicting with a write
operation in any of the transactions T2, T3, T4;

F. Neven Robustness against MVRC 32 / 54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021])

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T1
T2
T3
T4

b1
b2a2

a3b3
a4b4

a1a1

• b1 is rw-conflicting with a2, bi is conflicting with ai, b4 is conflicting
with a1

• b1 <T1 a1 or b4 is rw-conflicting with a1; and,

• there is no write operation in prefixb1(T1) ww-conflicting with a write
operation in any of the transactions T2, T3, T4;

F. Neven Robustness against MVRC 32 / 54

Robustness: SI versus MVRC (revisited)

Observation: non-robustness against SI implies non-robustness against
MVRC (but not vice versa)

Counter example for SI is also one for MVRC

start(Tb) Tb

Tc

· · ·T · · ·
Ta

• Tb →rw Tc

• Tb does not have a ww-dependency with any of the other transactions

• Ta →rw Tb

F. Neven Robustness against MVRC 33 / 54

Single-version read committed with locks

Multi-Split Schedule

(T1)

(T2)

(T3)

(T4)

(T5)

(T6)

(T7)

(T8)

Opening
phase

Sequential
phase

Closing
phase

Remaining
transactions

Theorem ([Ketsman et al., 2020])

A set T of transactions is not robust against RC
iff there is a multi-split schedule over T allowed under Read Committed.

Robustness problem is coNP-complete.

F. Neven Robustness against MVRC 34 / 54

Summary

Sound and complete algorithms

• Snapshot Isolation [Fekete, 2005]

• Single-version read committed and read uncommitted
[Ketsman et al., 2020]

• Multiversion read committed [Vandevoort et al., 2021]

Characterizations in terms of

• cycles of a specific form

• counter example schedules of a specific form

F. Neven Robustness against MVRC 35 / 54

But what about real world transactions?

Real world transactions

• Set T of transactions is rarely known in advance

• Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005]

• Construct a super approximation of the interference graph
• If the interference graph does not contain a forbidden cycle

• then conclude that the considered setting is robust
• otherwise, non-robustness can not be concluded

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

• Set T of transactions is rarely known in advance

• Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005]

• Construct a super approximation of the interference graph

• If the interference graph does not contain a forbidden cycle
• then conclude that the considered setting is robust
• otherwise, non-robustness can not be concluded

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

• Set T of transactions is rarely known in advance

• Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005]

• Construct a super approximation of the interference graph
• If the interference graph does not contain a forbidden cycle

• then conclude that the considered setting is robust

• otherwise, non-robustness can not be concluded

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

• Set T of transactions is rarely known in advance

• Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005]

• Construct a super approximation of the interference graph
• If the interference graph does not contain a forbidden cycle

• then conclude that the considered setting is robust
• otherwise, non-robustness can not be concluded

F. Neven Robustness against MVRC 36 / 54

Our approach

• Focus on sets of transactions that are generated through a fixed set
of transaction programs

• Provide an adequate formalization that ensures soundness and
completeness

F. Neven Robustness against MVRC 37 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates
Transaction Templates
Functional Constraints
Limitations

4 Conclusions

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates
Transaction Templates
Functional Constraints
Limitations

4 Conclusions

SmallBank benchmark [Alomari et al., 2008]

Database Schema

Account (Name, CustomerID)
Savings (CustomerID, Balance)
Checking (CustomerID, Balance)

Programs

• Balance: return total balance for a given customer.

• DepositChecking: deposit a given amount on the checking account
of a given customer.

• TransactSavings: deposit or withdraw a given amount on the
savings account of a given customer.

• Amalgamate: transfer all funds of one given customer to the
checking account of a second given customer.

• WriteCheck: write a check of a given amount against a given
customer, penalizing if overdrawing.

F. Neven Robustness against MVRC 38 / 54

Transaction templates

Transaction Templates

A transaction template is a sequence of read (R), write (W) and atomic
update (U) operations over typed variables, where each operation
specifies the list of attributes that is being read/overwritten.

Example: SmallBank benchmark

WriteCheck:

R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

DepositChecking:

R[X : Account{Name, CustID}]
U[Z : Checking{CustID, Bal}{Bal}]

Atomic update (U) operations combine a read (R) and write (W) operation
in one atomic operation, that cannot be interleaved by other operations.

F. Neven Robustness against MVRC 39 / 54

Transaction templates and schedules

By assigning tuples to variables, we can instantiate transactions.

Example: SmallBank benchmark

WriteCheck:

R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

DepositChecking:

R[X : Account{Name, CustID}]
U[Z : Checking{CustID, Bal}{Bal}]

Schedule over {WriteCheck,DepositChecking}

WC1 : R[a0] R[s0] R[c0] U[c2] C (X 7→ a, Y 7→ s, Z 7→ c)
DC2 : R[a0] U[c0] C (X 7→ a, Z 7→ c)
DC3 : R[a′0] U[c

′
0] C (X 7→ a′, Z 7→ c′)

F. Neven Robustness against MVRC 40 / 54

Deciding robustness against RC

Key insight:

If a workload is not robust against MVRC, then a counterexample
multiversion split schedule exists with at most 3 different tuples of each
type.

Theorem [Vandevoort et al., 2021]

Deciding robustness against MVRC for a set of transaction templates is in
PTIME.

F. Neven Robustness against MVRC 41 / 54

Detecting robustness against RC

Maximal robust subsets by analysis setting for SmallBank:

Robust subsets [Alomari and Fekete, 2015]

Only R & W {Bal} {Bal}
Atomic Updates {Am, DC, TS}, {Am, DC, TS}, {Bal}

{Bal, DC}, {Bal, TS}
Attr conflicts {Am, DC, TS}, {Am, DC, TS}, {Bal}

{Bal, DC}, {Bal, TS}

Maximal robust subsets by analysis setting for TPC-Ckv:

Robust subsets [Alomari and Fekete, 2015]

Only R & W {OS, SL} {OS, SL}
Atomic Updates {Del, Pay, SL}, {NO, SL}, {Del, Pay, SL}, {NO},

{Pay, OS, SL} {OS, SL}
Attr conflicts {Del, Pay, NO, SL}, {Del, Pay, SL}, {Del, Pay, NO}

{Pay, OS, SL} {OS, SL}

F. Neven Robustness against MVRC 42 / 54

Increased transaction throughput
• PostgreSQL: isolation levels RC, SI and SSI.

• Robust subset of SmallBank benchmark: {Am, DC, TS}.
• 18000 bank accounts → small subset is a hotspot.

• 200 concurrent clients.

Figure: Hotspot of 1000 accounts. Figure: Hotspot of 100 accounts.

F. Neven Robustness against MVRC 43 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

Promotion

Promote read operations to atomic updates that write back the read value.

Example: SmallBank benchmark

→ Promote all reads accessing a Savings or Checking account.

WriteCheck (original):

R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

WriteCheck (promoted):

R[X : Account{Name, CustID}]
U[Y : Savings{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

F. Neven Robustness against MVRC 44 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

Promotion

Promote read operations to atomic updates that write back the read value.

Example: SmallBank benchmark

→ Promote all reads accessing a Savings or Checking account.

WriteCheck (original):

R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

WriteCheck (promoted):

R[X : Account{Name, CustID}]
U[Y : Savings{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

F. Neven Robustness against MVRC 44 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

Promotion

Promote read operations to atomic updates that write back the read value.

Example: SmallBank benchmark

→ Promote all reads accessing a Savings or Checking account.

WriteCheck (original):

R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

WriteCheck (promoted):

R[X : Account{Name, CustID}]
U[Y : Savings{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

F. Neven Robustness against MVRC 44 / 54

Experiments
Since we modified the templates, outperforming the higher isolation levels
is no longer guaranteed!

Figure: Hotspot of 1000 accounts. Figure: Hotspot of 100 accounts.

Conclusion

When contention increases, RC+promotion still outperforms higher
isolation levels and related work.

F. Neven Robustness against MVRC 45 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates
Transaction Templates
Functional Constraints
Limitations

4 Conclusions

Motivation

Tuples in a database are often related (e.g. foreign key constraints).
→ modelled as functions.

Functions for SmallBank benchmark
“Each bank account is related
to exactly one checking and
one savings account.”

⇒
function f dom(f) range(f)
fA→C Account Checking
fA→S Account Savings

F. Neven Robustness against MVRC 46 / 54

Transaction templates with functional constraints

Example: SmallBank benchmark

Amalgamate:

R[X1 : Account{N, C}]
R[X2 : Account{N, C}]
U[Y1 : Savings{C, B}{B}]
U[Z1 : Checking{C, B}{B}]
U[Z2 : Checking{C, B}{B}]
X1 6= X2,
Y1 = fA→S(X1)
Z1 = fA→C(X1)
Z2 = fA→C(X2)

GoPremium:

U[X : Account{N, C}{I}]
R[Y : Savings{C, I}]
U[Y : Savings{C}{I}]
Y = fA→S(X)

Variable assignment should respect all functional constraints.
→ Rules out schedules that cannot occur in practice.

F. Neven Robustness against MVRC 47 / 54

Functional constraints and robustness

By including functional constraints, we can. . .

• . . . detect more sets of templates as robust against RC;
Robust subsets SmallBank benchmark

Only R & W {Bal}
Atomic Updates {Am, DC, TS}, {Bal, DC}, {Bal, TS}
Attr Conflicts {Am, DC, TS}, {Bal, DC}, {Bal, TS}
Func Constraints {Am, DC, TS, GP}, {Bal, DC, GP}, {Bal, TS, GP}

• . . . reduce the number of promoted reads required to obtain
robustness against RC (e.g. TPC-Ckv).

F. Neven Robustness against MVRC 48 / 54

Deciding robustness against RC

Theorem [Vandevoort et al., 2022]

Robustness against RC for transaction templates with functional
constraints is undecidable, even without disequality constraints.

Schema graph:

AccountSavings Checking

fA→S fA→C

• in NLOGSPACE when functions are bijections and schema graph is
acyclic
• in EXPSPACE when schema graph is acyclic Further improvements by

restricting. . .
• . . . templates → exptime.
• . . . number of paths in schema graph → pspace.

F. Neven Robustness against MVRC 49 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates
Transaction Templates
Functional Constraints
Limitations

4 Conclusions

Limitations

Assumptions in our formalism:
• No predicate reads: tuples are accessed based on a key value that

cannot be modified.
• When including predicate reads, iterating over multiversion split

schedules is no longer sufficient.
• Currently working on a sufficient condition for robustness against RC

for a setting with predicate reads.

• All transactions are executed under the same isolation level.

F. Neven Robustness against MVRC 50 / 54

Outline

1 Database Concurrency Control (101)

2 Robustness for Transactions

3 Robustness for Transaction Templates

4 Conclusions

Summary

• Complete characterizations for robustness against RC, MVRC, and SI
for workloads specified as transactions. Provide insight into the
structure of problematic behaviour.

• Algorithms detecting robustness for workloads specified as transaction
templates (with functional constraints).

• Code modification (promotion) to obtain robustness against RC.

• Experimental validation of improved robustness detection (compared
to related work) and increased throughput.

F. Neven Robustness against MVRC 51 / 54

Research directions

• Robustness under different notions for serializability: final-state
serializability, view serializability, semantic serializability.

• Undecidability boundary for transaction templates with functional
constraints
• Allocation problem:

• given a set of transactions T and a set of isolation levels SI : assign
isolation levels to transactions such that serializability is guaranteed
and performance is optimal.
• addressed by [Fekete, 2005] for SI and S2PL.

• Quantifying non-robustness:
• Probabilistically: How likely is it that an allowed schedule is not

serializable? (e.g., [Fekete et al., 2009])
• Characterize non-serializable schedules (e.g., to help debug anomalies

caused by using weaker isolation levels [Gan et al., 2020])

• Robustness for distributed transactions

F. Neven Robustness against MVRC 52 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control
A personal reflection

The pros

• From practice to theory (there and back again?)

• Relevant and challenging open questions

• Classical DB theory (deserves more attention from PODS)

The cons

• It is not that easy to get into, but I hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Thank you for your attention

Work in collaboration with

Bas Ketsman
Vrije Universiteit Brussel

Christoph Koch
EPFL

Brecht Vandevoort
Universiteit Hasselt

F. Neven Robustness against MVRC 54 / 54

References I

I Alomari, M., Cahill, M., Fekete, A., and Rohm, U. (2008).
The cost of serializability on platforms that use snapshot isolation.
In ICDE, pages 576–585.

I Alomari, M. and Fekete, A. (2015).
Serializable use of read committed isolation level.
In AICCSA, pages 1–8.

I Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I.
(2013).
HAT, not CAP: Towards highly available transactions.
In USENIX HotOS, pages 24–24.

I Beillahi, S. M., Bouajjani, A., and Enea, C. (2019a).
Checking robustness against snapshot isolation.
In CAV, pages 286–304.

F. Neven Robustness against MVRC 54 / 54

References II

I Beillahi, S. M., Bouajjani, A., and Enea, C. (2019b).
Robustness against transactional causal consistency.
In CONCUR, pages 1–18.

I Bernardi, G. and Gotsman, A. (2016).
Robustness against consistency models with atomic visibility.
In CONCUR, pages 7:1–7:15.

I Cerone, A. and Gotsman, A. (2018).
Analysing snapshot isolation.
J.ACM, 65(2):1–41.

I Cerone, A., Gotsman, A., and Yang, H. (2017).
Algebraic Laws for Weak Consistency.
In CONCUR, pages 26:1–26:18.

F. Neven Robustness against MVRC 54 / 54

References III

I Fekete, A. (2005).
Allocating isolation levels to transactions.
In PODS, pages 206–215.

I Fekete, A., Liarokapis, D., O’Neil, E. J., O’Neil, P. E., and Shasha,
D. E. (2005).
Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528.

I Fekete, A. D., Goldrei, S., and Asenjo, J. P. (2009).
Quantifying isolation anomalies.
PVLDB, 2(1):467–478.

I Gan, Y., Ren, X., Ripberger, D., Blanas, S., and Wang, Y. (2020).
Isodiff: Debugging anomalies caused by weak isolation.
Proc. VLDB Endow., 13(11):2773–2786.

F. Neven Robustness against MVRC 54 / 54

References IV

I Ketsman, B., Koch, C., Neven, F., and Vandevoort, B. (2020).
Deciding robustness for lower SQL isolation levels.
In PODS, pages 315–330.

I Papadimitriou, C. H. (1986).
The Theory of Database Concurrency Control.
Computer Science Press.

I Vandevoort, B., Ketsman, B., Koch, C., and Neven, F. (2021).
Robustness against read committed for transaction templates.
PVLDB, 14(11):2141–2153.

I Vandevoort, B., Ketsman, B., Koch, C., and Neven, F. (2022).
Robustness against read committed for transaction templates with
functional constraints.
ICDT 2022.

F. Neven Robustness against MVRC 54 / 54

	Database Concurrency Control (101)
	Serializability
	Isolation Levels
	Robustness

	Robustness for Transactions
	Snapshot Isolation
	Multiversion Read Committed

	Robustness for Transaction Templates
	Transaction Templates
	Functional Constraints
	Limitations

	Conclusions

