Robustness against read committed:
a free transactional lunch

Frank Neven

UHasselt, Data Science Institute, ACSL

PODS 2022

Medieval town of Gruyeres

Picture from Tripadvisor

F. Neven Robustness against MVRC

Concurrent transactions & Swiss cheese fondue @Gruyeres

i

Bas Ketsman Christoph Koch Brecht Vandevoort
Vrije Universiteit Brussel ~ EPFL Universiteit Hasselt

F. Neven Robustness against MVRC 2 /54

Outline

@ Database Concurrency Control (101)
© Robustness for Transactions
© Robustness for Transaction Templates

@ Conclusions

Outline

@ Database Concurrency Control (101)
@ Serializability
@ Isolation Levels
@ Robustness

Database transactions: concurrent access to data

A balancing act

F. Neven Robustness against MVRC

3/

Database transactions: concurrent access to data

A balancing act

No /s, /aticy,

Higher throughput
High number of
possible data anomaly

types

F. Neven

X D
L 1]
& &
SQ) Q
§ 3 3
S & 2
(J)
& « &

Isolation Level

Robustness against MVRC

Lower throughput

Low number of
possible data anomaly

types

3/

Database transactions: concurrent access to data

A balancing act
> ke
g 2
S g % v
5 § 9 3
T ¢ & R
) I N
4 s} J .0
S 3 & S
< ¥ & %)
Higher throughput Lower throughput
High number of Low number of
possible data anomaly possible data anomaly
types
Isolation Level

types
Free lunch: given more knowledge on workload, can you choose a lower

isolation level but still have maximal data consistency?
Robustness against MVRC

F. Neven

3/

Data inconsistency

Transaction 1 Accounts
Withdraw €50 from
account A
A = €400
B =€500

Get balance A — €400

Robustness against MVRC

Data inconsistency

Transaction 1 Accounts
Withdraw €50 from
account A
A = €400
B =€500

Get balance A — €400

Compute new value

Robustness against MVRC

Data inconsistency

Transaction 1 Accounts
Withdraw €50 from
account A
A = €400
B =€500

Get balance A — €400

Compute new value

Set A = €350 A =€350
Commit B = €500

F. Neven Robustness against MVRC

Data inconsistency

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A =€400
B =€500

Get balance A — €400

Compute new value

F. Neven

Get balance A — €400
Get balance B — €500
Compute new values

Robustness against MVRC

Data inconsistency

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B =€500
Get balance A — €400
Get balance A — €400
Get balance B — €500
Compute new value Compute new values
Set A =<0 A=€0
Set B = €900 B =€900
Commit

F. Neven

Robustness against MVRC

Data inconsistency

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A =€400
B =€500

Get balance A — €400
Get balance A — €400
Get balance B — €500

Compute new values
Compute new value

Set A =<0 A=%€0
Set B = €900 B =€900
Commit
Set A = €350 A =€350
Commit B = €900

— Concurrent execution of transactions might lead to data inconsistencies!

F. Neven Robustness against MVRC 4/

Outline

@ Database Concurrency Control (101)
@ Serializability

Serializability: holy grail for data consistency

Executions that leave the data in a consistent state

Definition

A schedule is serializable if its outcome is equivalent to that of a serial
schedule (with the same transactions).

Rationale: if each transaction is correct by itself, then a schedule that
comprises any serial execution of these transactions is correct.

F. Neven Robustness against MVRC 5 /54

Serializability: holy grail for data consistency

Executions that leave the data in a consistent state

A schedule is serializable if its outcome is equivalent to that of a serial
schedule (with the same transactions).

Rationale: if each transaction is correct by itself, then a schedule that
comprises any serial execution of these transactions is correct.

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A =€400 i)
B = €500 Outcome is not equivalent to
Get balance A — €400
Get balance A — €400) . . — —
Get balance B — €500 Tl? T2 A - 50' B - 9001 or,
Compute new values
Compute new value Set A= €0 A=€0 o Th:T1: A= —-50, B=900.
Set B = €900 B =€900
Commit
Set A = €350 A =€350
Commit B =€900
F. Neven Robustness against MVRC

Concurrency control methods that guarantee serializability

Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

F. Neven Robustness against MVRC 6/

Concurrency control methods that guarantee serializability

Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

® Regulate access through shared (read) and exclusive (write) locks.

F. Neven Robustness against MVRC 6/

Concurrency control methods that guarantee serializability

Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

® Regulate access through shared (read) and exclusive (write) locks.
® R-locks on the same object do not conflict, other combinations do

F. Neven Robustness against MVRC 6/

Concurrency control methods that guarantee serializability

Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

® Regulate access through shared (read) and exclusive (write) locks.

® R-locks on the same object do not conflict, other combinations do
® Before an operation a corresponding lock needs to be acquired. If there
is a conflict the acquiring party needs to wait.

F. Neven Robustness against MVRC 6 /54

Concurrency control methods that guarantee serializability

Pessimistic concurrency control

Concurrent transactions can be delayed through locking.

Two-phase locking (2PL)

® Regulate access through shared (read) and exclusive (write) locks.
® R-locks on the same object do not conflict, other combinations do
® Before an operation a corresponding lock needs to be acquired. If there
is a conflict the acquiring party needs to wait.
® Two phases:

® Growing: lock acquiring phase, no locks are released
® Shrinking: lock releasing phase, no locks are acquired

F. Neven Robustness against MVRC 6 /54

Two phase locking

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B = €500

R-lock(A). Read(A)

Robustness against MVRC

Two phase locking

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B = €500

R-lock(A). Read(A)

R-lock(A). Read(A)
R-lock(B). Read(B)

Robustness against MVRC

Two phase locking

Transaction 1

Withdraw €50 from
account A

Transaction 2

Transfer €400 from
account A to B

R-lock(A). Read(A)

R-lock(A). Read(A)
R-lock(B). Read(B)
Compute new values

Robustness against MVRC

Accounts
A = €400
B = €500

Two phase locking

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B = €500

R-lock(A). Read(A)
R-lock(A). Read(A)
R-lock(B). Read(B)
Compute new values
W-lock(A). Denied

Robustness against MVRC

Two phase locking

Transaction 1
Withdraw €50 from
account A

Transaction 2

Transfer €400 from
account A to B

R-lock(A). Read(A)

Compute new value
W-lock(A). Denied
DEADLOCK

F. Neven

R-lock(A). Read(A)
R-lock(B). Read(B)
Compute new values
W-lock(A). Denied

Robustness against MVRC

Accounts
A = €400
B = €500

Two phase locking

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B = €500

R-lock(A). Read(A)
R-lock(A). Read(A)
R-lock(B). Read(B)
Compute new values

C t I
ompute new value W-lock(A). Denied

W-lock(A). Denied

DEADLOCK

Guarantees serializability, but has a negative effect on throughput
® Waiting on release of locks

® Aborts to resolve deadlocks

F. Neven Robustness against MVRC

Multiversion concurrency control (MVCC)

Multiversion

® DBMS maintains multiple versions of an object
® e.g., achieved through timestamps

® When reading an object

® no longer blocked by concurrent writer
® an earlier version can be supplied

F. Neven Robustness against MVRC 8 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

F. Neven Robustness against MVRC 9 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

® Crux:

® Transaction takes a snapshot of the data at start time and makes
tentative changes on the snapshot

F. Neven Robustness against MVRC 9 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

® Crux:
® Transaction takes a snapshot of the data at start time and makes
tentative changes on the snapshot
® Snapshot Isolation: at commit time, check whether concurrent
transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).

F. Neven Robustness against MVRC 9 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

® Crux:
® Transaction takes a snapshot of the data at start time and makes
tentative changes on the snapshot
® Snapshot Isolation: at commit time, check whether concurrent
transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).
® Serializable Sl: additional dangerous structure check

F. Neven Robustness against MVRC 9 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

® Crux:
® Transaction takes a snapshot of the data at start time and makes
tentative changes on the snapshot
® Snapshot Isolation: at commit time, check whether concurrent
transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).
® Serializable Sl: additional dangerous structure check

® Mantra: readers do not block writers (and vice-versa), but writers still
block writers.

F. Neven Robustness against MVRC 9 /54

Concurrency control methods that guarantee serializability

Optimistic concurrency control

Serializable snapshot isolation

® Crux:
® Transaction takes a snapshot of the data at start time and makes
tentative changes on the snapshot
® Snapshot Isolation: at commit time, check whether concurrent
transactions have modified objects that the current transaction wants
to install in the database, abort if so (first committer wins).
® Serializable Sl: additional dangerous structure check

® Mantra: readers do not block writers (and vice-versa), but writers still
block writers.
e Guarantees serializability, but has a negative effect on throughput:

® performing checks,
® possible aborts due to conflicts.

F. Neven Robustness against MVRC 9 /54

(Serializable) Snapshot Isolation

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B = €500

Take snapshot
Get balance A — €400

F. Neven

Robustness against MVRC

10 / 54

(Serializable) Snapshot Isolation

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A =€400
B = €500
Take snapshot
Get balance A — €400
Take snapshot
Get balance A — €400
Get balance B — €500
Set A = €0, Set
B =€900
Commit
A = €0,
B =€900

F. Neven

Robustness against MVRC

10 / 54

(Serializable) Snapshot Isolation

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A =€400
B = €500
Take snapshot
Get balance A — €400
Take snapshot
Get balance A — €400
Get balance B — €500
Set A = €0, Set
B =€900
Commit
A = €0,
B =€900

Set A = €350
Commit — ABORT

F. Neven

Robustness against MVRC

10 / 54

Outline

@ Database Concurrency Control (101)

@ [solation Levels

Isolation level defines a superset of serializable schedules

Trading consistency for increased throughput

F. Neven Robustness against MVRC 11 / 54

https://www.postgresql.org/docs/current/transaction-iso.html

Isolation level defines a superset of serializable schedules

Trading consistency for increased throughput

© READ COMMITTED:

® read last committed version (no locking)
® a write statement acquires W-lock (released at commit)
® deadlock — aborts

@ REPEATABLE READ (aka SNAPSHOT ISOLATION)
© SERIALIZABLE (aka SERIALIZABLE SNAPSHOT ISOLATION)

https://www.postgresql.org/docs/current/transaction-iso.html

F. Neven Robustness against MVRC 11 / 54

https://www.postgresql.org/docs/current/transaction-iso.html

Schedule for bank example is allowed under RC

but not under Sl

Transaction 1 Transaction 2 Accounts
Withdraw €50 from Transfer €400 from
account A account A to B
A = €400
B =€500
Get balance A — €400
Get balance A — €400
Get balance B — €500
Compute new value Compute new values
W-lock(A) Set A = €0 A=€0
W-lock(B) Set B = €900 B = €900
Commit. Release locks
W-lock(A)
Set A = €350 A = €350
Commit B = €900

F. Neven

Robustness against MVRC

Non-serializable bank example allowed under Sl

Allowed under Sl

® Account A = €600; Account B = €700.
® T : Withdraw €500 from account A if sum A+ B > €1000
® T'p : Withdraw €500 from account B if sum A + B > €1000

F. Neven Robustness against MVRC 13 / 54

Non-serializable bank example allowed under Sl

Allowed under Sl

® Account A = €600; Account B = €700.
® T : Withdraw €500 from account A if sum A+ B > €1000
® T'p : Withdraw €500 from account B if sum A + B > €1000

® Serial execution:
® Ty;Tr: A=+<100; B =<€700
® Tg;Tx: A=<€600; B=<€200

F. Neven Robustness against MVRC 13 / 54

Non-serializable bank example allowed under Sl

Allowed under Sl

Account A = €600; Account B = €700.
T4 : Withdraw €500 from account A if sum A+ B > €1000

T : Withdraw €500 from account B if sum A + B > €1000
Serial execution:

® Ty;Tr: A=+<100; B =<€700

® Tg;Tx: A=<€600; B=<€200

® Concurrent execution under SI: A = £€100;: B = €200

F. Neven Robustness against MVRC

13 / 54

What about a free lunch?

Under which conditions, do isolation levels weaker than serializability,
provide the same guarantees as serializability?

F. Neven Robustness against MVRC 14 / 54

Outline

@ Database Concurrency Control (101)

@ Robustness

Robustness

Assume an isolation level Z is chosen for a given workload 7 :

Workload T

Ty - [alfb]le]
T : @@
7; : [alfblic]ld]

F. Neven Robustness against MVRC 15 / 54

Robustness

Assume an isolation level Z is chosen for a given workload 7 :

’ Possible executions under I‘
[alo Bllallclb @lb]e] |
P mEcEo |

Ty - [alfb]le]
T : @@
7; : [alfblic]ld]

F. Neven Robustness against MVRC 15 / 54

Robustness

Assume an isolation level Z is chosen for a given workload 7 :

Workload T ’ Possible executions under I‘
Gl BeEmER]E]
lalla]la |[B][B]lc]c][d] b] ‘ Are all these

executions

[a]lo][allb]c] o][b][c][d] ‘ serializable?

Ty - [alfb]le]
T : @@
7; : [alfblic]ld]

F. Neven Robustness against MVRC 15 / 54

Robustness

Assume an isolation level Z is chosen for a given workload 7 :

Workload T ’ Possible executions under I‘
Gl BeEmER]E]
lalla]la |[B][B]lc]c][d] b] ‘ Are all these

executions

[a]lo][allb]c] o][b][c][d] ‘ serializable?

Ty - [alfb]le]
T : @@
7; : [alfblic]ld]

= Workload T is robust against isolation level Z.

F. Neven Robustness against MVRC 15 / 54

Robustness

Assume an isolation level Z is chosen for a given workload 7 :

Workload T ’ Possible executions under I‘
Gl BeEmER]E]
lalla] a][B][0]lc]c][d] ?] ‘ Are all these

executions

[a]lo][allb]c] o][b][c][d] ‘ serializable?

Ty - [alfb]le]
T : @@
7; : [alfblic]ld]

= Workload T is robust against isolation level Z.

® guarantees serializability under a lower isolation level

® expected higher throughput

F. Neven Robustness against MVRC 15 / 54

TPC-C is robust against SNAPSHOT ISOLATION

[Fekete et al., 2005]

TPC-C Transaction Programs:
® is a complex benchmark dealing with e NewOrder

most aspects of ordering, paying for,

and delivering of goods from ® StockLevel
warehouses. ® Payment

® consists of nine tables and five ® OrderStatus
transaction programs. ® Delivery

Every workload resulting from instantiations of the transaction programs is
serializable when executed under SNAPSHOT ISOLATION.

F. Neven Robustness against MVRC 16 / 54

Work on robustness

[Fekete et al., 2005] [Fekete, 2005] [Alomari et al., 2008] [Alomari and Fekete, 2015]
[Bernardi and Gotsman, 2016] [Cerone et al., 2017] [Cerone and Gotsman, 2018]
[Beillahi et al., 2019a] [Beillahi et al., 2019b]

Research on robustness. . .

® ... mostly focused on higher isolation levels (e.g. variations of
Snapshot Isolation);

® .. mostly focused on sufficient conditions to guarantee robustness.

F. Neven Robustness against MVRC 17 / 54

Work on robustness

[Fekete et al., 2005] [Fekete, 2005] [Alomari et al., 2008] [Alomari and Fekete, 2015]
[Bernardi and Gotsman, 2016] [Cerone et al., 2017] [Cerone and Gotsman, 2018]
[Beillahi et al., 2019a] [Beillahi et al., 2019b]

Research on robustness. . .

® ... mostly focused on higher isolation levels (e.g. variations of
Snapshot Isolation);

® .. mostly focused on sufficient conditions to guarantee robustness.

However, lower isolation levels are used in practice as well:

® RC is the default isolation level in certain databases (e.g. Postgres)
[Bailis et al., 2013].

® Focus on RC (and Sl) in the rest of this talk
[Ketsman et al., 2020, Vandevoort et al., 2021, Vandevoort et al., 2022]

F. Neven Robustness against MVRC 17 /

Outline

© Robustness for Transactions
@ Snapshot Isolation
@ Multiversion Read Committed

Transactions

Set 7 of transactions

® assumption:

® subscripting operations with the index number of the transaction
® transaction reads and writes at most once the same object

® simplistic model

F. Neven Robustness against MVRC 18 / 54

Schedules

Schedule (history) s over T

(T1) Rai[xo] W1ly]Cy
(12) Ra[Zo] Wa[x] Wo[z]Co
(13) R3[y1]W3[z]C3

e total order <, on operations in T

® < is consistent with ordering of the operations in transactions in T

F. Neven Robustness against MVRC 19 / 54

Schedules

Schedule (history) s over T

(T1) Ra[xo] W1[y]C1
(12) Ra (2] Wo[x] Wo[z]Co
(13) R3[y1]W3[z]C3

e total order <, on operations in T
® < is consistent with ordering of the operations in transactions in T

® maps every read operation to a write operation

F. Neven Robustness against MVRC 19 / 54

Schedules

Schedule (history) s over T

(T1) Rai[xo] W1ly]Cy
(12) Ra[Zo] Wa[x] Wo[z]Co
(13) R3[yo]W3[z]C3

total order <4 on operations in T
® < is consistent with ordering of the operations in transactions in T

® maps every read operation to a write operation

initial value xg, yo, zo for each object z, vy, z

F. Neven Robustness against MVRC 19 / 54

Towards serializability

A schedule is serializable iff it is conflict-equivalent to a single-version
serial schedule.

® Serial: schedule that executes transactions in a serial fashion.
® Single-version: only one installed version at the time.

® Several flavors of schedule equivalence: focus on conflict-equivalence.

F. Neven Robustness against MVRC 20 / 54

Towards serializability

A schedule is serializable iff it is conflict-equivalent to a single-version
serial schedule.

® Serial: schedule that executes transactions in a serial fashion.
® Single-version: only one installed version at the time.

® Several flavors of schedule equivalence: focus on conflict-equivalence.

Definition

Two operations are conflicting if they are on the same object, and at
least one of them is a write.

F. Neven Robustness against MVRC 20 / 54

From conflicts to dependencies relative to a schedule s
e T — T'"iff T accesses x, later T” accesses z, and the accesses conflict
® induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s Conflict Graph CG(s)

(T1) Rafxo] W1 [y]C1
W2 [z]Co » :Ba[z0]Wa]2 [2]Ca

(T») Ra[2zo] Wa[x] —
) Rs[y1]Ws[z]C3 T, Ry [Xo]wcl \\

(T:b) = (T : a):
® write-write dependency

® write-read dependency
® read-write (anti-)dependency

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
e T — T'"iff T accesses x, later T” accesses z, and the accesses conflict
® induces a relative ordering of transactions in a serial schedule that

preserves the order of conflicts

Schedule s Conflict Graph CG(s)

(T1) Rafxo] W1 [y]C1
W2[z]Co » :Ba[zolWa x> [2]Ca

(Ty) Ro([zo] Wa[x] £
(T5) Ra[y]is[2]Cs Ty Ry [XO}wcl \\

T3 :R3[y1]W3[z|C3

(T:b) = (T : a):
® write-write dependency: b is ww-conflicting with a and b < a
® write-read dependency
® read-write (anti-)dependency

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
e T — T'"iff T accesses x, later T” accesses z, and the accesses conflict
® induces a relative ordering of transactions in a serial schedule that
preserves the order of conflicts

Schedule s Conflict Graph CG(s)
(Th) Ralxo] W1 [y]C1
(T») R [zo] W [x] Wo[z]Co b Ro[zo]Ws [X]Mﬂ%

() R3[y1]Ws[z]Cs 7 :‘Rl[XO}wcl \\

(T:b) = (T : a):
® write-write dependency
® write-read dependency: b is wr-conflicting with a, and a reads the
version written by b (or later)
® read-write (anti-)dependency

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s
e T — T'"iff T accesses x, later T” accesses z, and the accesses conflict
® induces a relative ordering of transactions in a serial schedule that
preserves the order of conflicts

Schedule s Conflict Graph CG(s)
(T1) Ra[xo] W1 [y]Cy =
(Tg) R2 [Zo] Wg [X] WQ [Z]CQ 9 :R2 [ZO}WQ [X}WQ [Z} C2

) R3[y1]W3[z]C3 T ZRI[XO]wcl _’,‘_’\

T3 :R3[y1]W3[z]C3

(T:b) = (T : a):
® write-write dependency
® write-read dependency
® read-write (anti-)dependency: b is rw-conflicting with a, and b reads a
version installed before the version written by a

F. Neven Robustness against MVRC 21 / 54

From conflicts to dependencies relative to a schedule s

o T — T iff T accesses x, later T accesses x, and the accesses conflict
® induces a relative ordering of transactions in a serial schedule that
preserves the order of conflicts
Schedule s Conflict Graph C'G(s)

T
@) Rl Wl j//—éz\\
1

(T3) Ra[zo] W [x] Wo[z]Ca
(T3) Ra[y1]Ws[z]Cs _,F

(T:b) = (T :a):
® write-write dependency
® write-read dependency
® read-write (anti-)dependency

F. Neven Robustness against MVRC 21 / 54

Conflict serializability

Two schedules s and s are conflict-equivalent iff CG(s) = CG(s).

F. Neven Robustness against MVRC 22 / 54

Conflict serializability

Two schedules s and s are conflict-equivalent iff CG(s) = CG(s).

A schedule s over T is (conflict) serializable iff it is conflict-equivalent to
a single-version serial schedule.

F. Neven Robustness against MVRC 22 / 54

Conflict serializability

Two schedules s and s are conflict-equivalent iff CG(s) = CG(s).

A schedule s over T is (conflict) serializable iff it is conflict-equivalent to
a single-version serial schedule.

Theorem (e.g.,[Papadimitriou, 1986

A schedule s over T is conflict serializable iff CG(s) is acyclic.

F. Neven Robustness against MVRC 22 / 54

Robustness against an isolation level Z

A set of transactions 7T is robust against Z iff
every schedule for 7 that is allowed under Z is serializable.

F. Neven Robustness against MVRC 23 / 54

Robustness against an isolation level Z

A set of transactions 7T is robust against Z iff
every schedule for 7 that is allowed under Z is serializable.

Case 1: Case 2:
T is not robust against 7 T is robust against 7
_— T~
. Conflict I
serializable
schedules /
[] \
Schedules
allowed

Schedule s allowed under Z, under T
but not conflict serializable

F. Neven Robustness against MVRC 23 / 54

Outline

© Robustness for Transactions
@ Snapshot Isolation

Snapshot isolation

® rset(T'): set of objects read in transaction T

o wset(7): set of modified objects in transaction T’

Snapshot Isolation (SI)

A schedule is allowed under Sl iff
® every read operation refers to the last committed version before the
start of the current transaction.

® First Committer Wins: a transaction 1" can not commit if
wset(T') Nwset(T”) # () for any transaction T" concurrent with 7.

F. Neven Robustness against MVRC 24 / 54

Snapshot Isolation: properties of cycles in graphs

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SlI:
o T ww T T finishes before T" starts

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SlI:
o T ww T T finishes before T" starts
o T 3w T' T finishes before T' starts

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SlI:
o T ww T T finishes before T" starts
o T 3w T' T finishes before T" starts

There can be not be a cycle in the CG of a schedule in Sl containing

only ww- and wr-dependencies.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

For s a schedule allowed under SlI:
o T ww T T finishes before T" starts
o T 3w T' T finishes before T" starts

There can be not be a cycle in the CG of a schedule in Sl containing

only ww- and wr-dependencies.

Indeed, a cycle
Ty =Ty — - =T, =T

implies that

T, finishes before T starts.

F. Neven Robustness against MVRC 25 / 54

Snapshot Isolation: properties of cycles in graphs

A cycle in CG(s) must contain at least one rw-dependency.

Theorem ([Fekete, 2005

If s in Sl is not serializable, then CG(s) contains a chord-free cycle

T— =T, =>""T,=>""Te— - =T

where wset(T,,) N wset(T,) = O and wset(Ty) N wset(T,) = (.

F. Neven Robustness against MVRC 26 / 54

Robustness against Sl

Interference Graph IG(T) (static dependency graph)

® Superposition of dependencies for all possible schedules

® Nodes in /G(T) are transactions in 7.

® Edges indicate interference between transactions:
o T1 —€ T2 if
® rset(Th) Nwset(Th) # () and wset(Th) Nwset(Th) = 0
® exposed (vulnerable) edge
Q else, T7 =P Ty if
® at least one transaction writes to a commonly accessed attribute
® protected (non-vulnerable) edge

F. Neven Robustness against MVRC 27 / 54

Robustness against Sl

Interference Graph IG(T) (static dependency graph)

® Superposition of dependencies for all possible schedules

® Nodes in IG(T) are transactions in 7.
® Edges indicate interference between transactions:
e T1 —€ T2 if
® rset(Th) Nwset(Th) # () and wset(Th) Nwset(Th) = 0
® exposed (vulnerable) edge
Q else, T7 =P Ty if
® at least one transaction writes to a commonly accessed attribute
® protected (non-vulnerable) edge

Let s be a schedule for T allowed under SI,
a cycle in a CG(s) implies a cycle in IG(T).

F. Neven Robustness against MVRC 27 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005

A set of transactions T is not robust against Sl iff
IG(T) contains a chord-free cycle T --- — Ty —¢ Ty ¢ Tp — --- T

F. Neven Robustness against MVRC 28 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005

A set of transactions T is not robust against Sl iff
IG(T) contains a chord-free cycle T --- — T, —¢ 1, ¢ T, — ---T

Counter example split schedule s

start(7p) Ty
Te
ST

F. Neven Robustness against MVRC 28 / 54

Simple structure of counter example schedule

Theorem ([Fekete, 2005

A set of transactions T is not robust against Sl iff
IG(T) contains a chord-free cycle T --- — T, —¢ 1, ¢ T, — ---T

Counter example split schedule s Requirements

® T}, does not have a ww- or
wr-dependency with any of the
other transactions

° Tb —Tw Tc
Ta ° Ta —Tw Tb

start(7p) Ty
Te
ST

o T, — - =T = ... =T,

F. Neven Robustness against MVRC 28 / 54

Outline

© Robustness for Transactions

@ Multiversion Read Committed

Multiversion read committed

A schedule exhibits a dirty write if the following occurs:
(T;) ... Wx]... 000G
(Ty) WG]

F. Neven Robustness against MVRC 29 / 54

Multiversion read committed

Dirty writes

A schedule exhibits a dirty write if the following occurs:
(Ty) WG]

Multiversion Read Committed (MVRC)
A schedule is allowed under MVRC iff

® it does not exhibit a dirty write, and

® every read operation refers to the most recent committed version

F. Neven Robustness against MVRC 29 / 54

Robustness: S| vs MVRC

We can view an isolation level Z as a set of allowed schedules.
Observation

Let Z C J and T as set of transactions:

non-robustness of 7 against Z implies
non-robustness of 7 against J.

F. Neven Robustness against MVRC 30 / 54

Robustness: S| vs MVRC
We can view an isolation level Z as a set of allowed schedules.

Let Z C J and T as set of transactions:

non-robustness of 7 against Z implies
non-robustness of 7 against J.

Because of timing of snapshots:
e S| ¢ MVRC, and

e MVRC ¢ SI
Example
T1 5 Wl [y] Cl
Ty : Ralxo] Raly] Co
F. Neven

Robustness against MVRC 30 / 54

Multiversion read committed

For s a schedule allowed under MVRC:

o T ww ! can be concurrent but 7' commits before 7"

F. Neven Robustness against MVRC 31 /54

Multiversion read committed

For s a schedule allowed under MVRC:
o T ww ! can be concurrent but 7' commits before 7"

o T W T’ can be concurrent but 7' commits before 7"

F. Neven Robustness against MVRC 31 /54

Multiversion read committed

For s a schedule allowed under MVRC:
o T ww ! can be concurrent but 7' commits before 7"

o T W T’ can be concurrent but 7' commits before 7"

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

F. Neven Robustness against MVRC 31 /54

Multiversion read committed

For s a schedule allowed under MVRC:
o T ww ! can be concurrent but 7' commits before 7"

o T W T’ can be concurrent but 7' commits before 7"

There can not be a cycle in the CG of a schedule under MVRC containing

only ww- and wr-dependencies.

Indeed, a cycle
=Ty, — =T, =T

implies that

Ti commits before T} commits.

F. Neven Robustness against MVRC 31 /54

Robustness against MVRC

Theorem ([Vandevoort et al., 2021

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

F. Neven Robustness against MVRC

Robustness against MVRC
Theorem ([Vandevoort et al., 2021

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

] I
T, L]

T L1

Ty L1

F. Neven Robustness against MVRC 32/

Robustness against MVRC
Theorem ([Vandevoort et al., 2021

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

| I Y RN L 1]
i

T5 \

Ty

®) is rw-conflicting with ao, b; is conflicting with a;, by is conflicting
with ap

F. Neven Robustness against MVRC

Robustness against MVRC
Theorem ([Vandevoort et al., 2021

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

T @™ b7
T, /

T5 N

Ty

®) is rw-conflicting with ao, b; is conflicting with a;, by is conflicting
with ap

® by <7, ay or by is rw-conflicting with a;; and,

F. Neven Robustness against MVRC

Robustness against MVRC
Theorem ([Vandevoort et al., 2021

A set of transactions T is not robust against MVRC iff there exists a
counter example multiversion split schedule.

Multiversion split schedule

ail

T Ny /
T,

®) is rw-conflicting with ao, b; is conflicting with a;, by is conflicting
with ap
® by <7, ay or by is rw-conflicting with a;; and,

® there is no write operation in prefixy, (771) ww-conflicting with a write
operation in any of the transactions 715,713, 7Ty;

F. Neven Robustness against MVRC 32 /54

Robustness: Sl versus MVRC (revisited)

Observation: non-robustness against S| implies non-robustness against
MVRC (but not vice versa)

Counter example for Sl is also one for MVRC

start(7p) Ty
I,
T
1,
o Ty, =™ T,

® T3 does not have a ww-dependency with any of the other transactions
o T, —"Ty

F. Neven Robustness against MVRC 33 /54

Single-version read committed with locks

Multi-Split Schedule

(T1) ==
(T») -\ﬁ\]

(T3) (]

(Ty)

(Ts)

(To)

(T7) —

(Ts) —
Opening Sequential Closing Remaining

phase phase phase transactions

Theorem ([Ketsman et al., 2020

A set T of transactions is not robust against RC
iff there is a multi-split schedule over T allowed under Read Committed.

Robustness problem is coNP-complete.

F. Neven Robustness against MVRC 34 / 54

Summary

Sound and complete algorithms

® Snapshot Isolation [Fekete, 2005]

® Single-version read committed and read uncommitted
[Ketsman et al., 2020]

® Multiversion read committed [Vandevoort et al., 2021]

Characterizations in terms of
® cycles of a specific form

® counter example schedules of a specific form

F. Neven Robustness against MVRC 35/ 54

But what about real world transactions?

Real world transactions

® Set 7 of transactions is rarely known in advance

® Flow-of-control, inserts, deletes, predicate reads

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

® Set 7 of transactions is rarely known in advance

® Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005

® Construct a super approximation of the interference graph

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

® Set 7 of transactions is rarely known in advance

® Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005

® Construct a super approximation of the interference graph

® |f the interference graph does not contain a forbidden cycle
® then conclude that the considered setting is robust

F. Neven Robustness against MVRC 36 / 54

But what about real world transactions?

Real world transactions

® Set 7 of transactions is rarely known in advance

® Flow-of-control, inserts, deletes, predicate reads

Approximate approach [Fekete et al., 2005

® Construct a super approximation of the interference graph

® |f the interference graph does not contain a forbidden cycle

® then conclude that the considered setting is robust
® otherwise, non-robustness can not be concluded

F. Neven Robustness against MVRC 36 / 54

Our approach

® Focus on sets of transactions that are generated through a fixed set
of transaction programs
® Provide an adequate formalization that ensures soundness and

completeness

Robustness against MVRC

Outline

© Robustness for Transaction Templates
@ Transaction Templates
@ Functional Constraints
@ Limitations

Outline

© Robustness for Transaction Templates
@ Transaction Templates

SmallBank benchmark [Alomari et al., 2008]

Database Schema

Account (Name, CustomerlD)
Savings (CustomerlD, Balance)
Checking (CustomerlID, Balance)

Programs

e Balance: return total balance for a given customer.

® DepositChecking: deposit a given amount on the checking account
of a given customer.

® TransactSavings: deposit or withdraw a given amount on the
savings account of a given customer.

® Amalgamate: transfer all funds of one given customer to the
checking account of a second given customer.

® WriteCheck: write a check of a given amount against a given
customer, penalizing if overdrawing.

F. Neven Robustness against MVRC 38 /54

Transaction templates

Transaction Templates

A transaction template is a sequence of read (R), write (W) and atomic
update (U) operations over typed variables, where each operation
specifies the list of attributes that is being read/overwritten.

Example: SmallBank benchmark

WriteCheck: DepositChecking:
R[X : Account{Name, CustID}] R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}] U[Z : Checking{CustID, Bal}{Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

Atomic update (U) operations combine a read (R) and write (W) operation
in one atomic operation, that cannot be interleaved by other operations.

F. Neven Robustness against MVRC 39 / 54

Transaction templates and schedules
By assigning tuples to variables, we can instantiate transactions.

Example: SmallBank benchmark

WriteCheck: DepositChecking;:
R[X : Account{Name, CustID}] R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}] U[Z : Checking{CustID, Bal}{Bal}]
R[Z : Checking{CustID, Bal}]
U[Z : Checking{CustID, Bal}{Bal}]

Schedule over {WriteCheck, DepositChecking}

WC; : R[ag| R[so] R[co] Ulco]C (X a, Y+ 8,Z — ¢)
DC, : R[ao] Ulco] C (X+—a,Z+c)
DCj : Rlag) Ulcy] C (X—=a,Z—)

F. Neven Robustness against MVRC 40 / 54

Deciding robustness against RC

Key insight:

If a workload is not robust against MVRC, then a counterexample
multiversion split schedule exists with at most 3 different tuples of each
type.

Theorem [Vandevoort et al., 2021

Deciding robustness against MVRC for a set of transaction templates is in
PTIME.

F. Neven Robustness against MVRC 41 / 54

Detecting robustness against RC

Maximal robust subsets by analysis setting for SmallBank:

H Robust subsets \ [Alomari and Fekete, 2015]
Only R & W {Bal} {Bal}
Atomic Updates || {Am, DC, TS}, {Am, DC, TS}, {Bal}
{Bal, DC}, {Bal, TS}
Attr conflicts {Am, DC, TS}, {Am, DC, TS}, {Bal}
{Bal, DC}, {Bal, TS}

Maximal robust subsets by analysis setting for TPC-Ckv:

|| Robust subsets | [Alomari and Fekete, 2015]
Only R & W {0S, SL} {0S, SL}
Atomic Updates || {Del, Pay, SL}, {NO, SL}, | {Del, Pay, SL}, {NO},
{Pay, OS, SL} {0S, SL}
Attr conflicts {Del, Pay, NO, SL}, {Del, Pay, SL}, {Del, Pay, NO}
{Pay, OS, SL} {0S, SL}

F. Neven Robustness against MVRC

Increased transaction throughput

® PostgreSQL: isolation levels RC, SI and SSI.
® Robust subset of SmallBank benchmark: {Am, DC, TS}.
® 18000 bank accounts — small subset is a hotspot.

® 200 concurrent clients.

300

100

Transactions / second

IS
o

N
o

Aborts / second
o
o

00 4

20000 A

00 4

o
o
L

o
I

. RC Sl mmm SS|

0.1 0.3 0.5 0.7 0.9
Hotspot probability

Figure: Hotspot of 1000 accounts.

F. Neven

Transactions / second

Aborts / second

mm RC Sl . SS|

30000 -

20000 A

10000 A -

0.1 0.3 0.5 0.7 0.9
Hotspot probability

Figure: Hotspot of 100 accounts.

Robustness against MVRC 43 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

F. Neven Robustness against MVRC 44 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

Promotion

Promote read operations to atomic updates that write back the read value.

F. Neven Robustness against MVRC 44 / 54

Obtaining robustness

Idea: Modify transaction templates to obtain robustness against RC,
without changing the semantics or database internals.

Promotion

Promote read operations to atomic updates that write back the read value.

Example: SmallBank benchmark

— Promote all reads accessing a Savings or Checking account.

WriteCheck (original): WriteCheck (promoted):
R[X : Account{Name, CustID}] R[X : Account{Name, CustID}]
R[Y : Savings{CustID, Bal}] U[Y : Savings{CustID, Bal}{Bal}]
R[Z : Checking{CustID, Bal}] U[Z : Checking{CustID, Bal}{Bal}]
U|[Z : Checking{CustID, Bal}{Bal}] U|[Z : Checking{CustID, Bal}{Bal}]

F. Neven Robustness against MVRC

44 / 54

Experiments

Since we modified the templates, outperforming the higher isolation levels
is no longer guaranteed!

s RC RC+P mmm RC-[AF'15] S| mmm SS| s RC RC+P mmm RC-[AF'15] S| mmm SSI|
el el
§ 30000 § 30000 A
] g
= 20000 = 20000 .
c c
o ° b
g 2 -
§ 10000 A ﬁ 10000 4
c c
© ©
= 0- [04
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
kel o
c - c =
(s} o
O o =
@ 2000 A - | 2 10000 4 - I I
3 _ 3
£ £ =
go.g.m.l.l. §o.n.J.|..
0.1 0.3 0. 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Hotspot probability Hotspot probability
Figure: Hotspot of 1000 accounts. Figure: Hotspot of 100 accounts.

Conclusion

When contention increases, RC+promotion still outperforms higher
isolation levels and related work.

F. Neven Robustness against MVRC 45 / 54

Outline

© Robustness for Transaction Templates

@ Functional Constraints

Motivation

Tuples in a database are often related (e.g. foreign key constraints).
— modelled as functions.

Functions for SmallBank benchmark

“Each bank account is related function f | dom(f) | range(f)
to exactly one checking and = fassc Account | Checking
one savings account.” fass Account | Savings

F. Neven Robustness against MVRC 46 / 54

Transaction templates with functional constraints

Example: SmallBank benchmark

Amalgamate: GoPremium:
R[X; : Account{N, C}] U[X : Account{N, C}{l}]
R[X5 : Account{N, C}] R[Y : Savings{C, I}]
U[Y; : Savings{C, B}{B}] U[Y : Savings{C}{I}]
U[Z; : Checking{C, B}{B}] Y= fas(X)
U[Z, : Checking{C, B}{B}]
X 7é X27
Y1 = fass(X1)
Z1 = fasc(X1)
Zy = fasco(X2)

Variable assignment should respect all functional constraints.
— Rules out schedules that cannot occur in practice.

F. Neven Robustness against MVRC

47 / 54

Functional constraints and robustness

By including functional constraints, we can...

® . detect more sets of templates as robust against RC;
|| Robust subsets SmallBank benchmark
Only R & W {Bal}
Atomic Updates {Am, DC, TS}, {Bal, DC}, {Bal, TS}
Attr Conflicts {Am, DC, TS}, {Bal, DC}, {Bal, TS}
Func Constraints || {Am, DC, TS, GP}, {Bal, DC, GP}, {Bal, TS, GP}

® . reduce the number of promoted reads required to obtain
robustness against RC (e.g. TPC-Ckv).

F. Neven Robustness against MVRC 48 / 54

Deciding robustness against RC

Theorem [Vandevoort et al., 2022

Robustness against RC for transaction templates with functional
constraints is undecidable, even without disequality constraints.

Schema graph:

fass fasc
P ~

Savings Account Checking

® in NLOGSPACE when functions are bijections and schema graph is
acyclic

® in EXPSPACE when schema graph is acyclic Further improvements by
restricting. . .

® . templates — EXPTIME.
® ..number of paths in schema graph — PSPACE.

F. Neven Robustness against MVRC 49 / 54

Outline

© Robustness for Transaction Templates

@ Limitations

Limitations

Assumptions in our formalism:

® No predicate reads: tuples are accessed based on a key value that
cannot be modified.
® When including predicate reads, iterating over multiversion split
schedules is no longer sufficient.
® Currently working on a sufficient condition for robustness against RC
for a setting with predicate reads.

® All transactions are executed under the same isolation level.

F. Neven Robustness against MVRC 50 / 54

Outline

@ Conclusions

Summary

F. Neven

Complete characterizations for robustness against RC, MVRC, and SI
for workloads specified as transactions. Provide insight into the
structure of problematic behaviour.

Algorithms detecting robustness for workloads specified as transaction
templates (with functional constraints).

Code modification (promotion) to obtain robustness against RC.

Experimental validation of improved robustness detection (compared
to related work) and increased throughput.

Robustness against MVRC 51/

Research directions

® Robustness under different notions for serializability: final-state
serializability, view serializability, semantic serializability.

® Undecidability boundary for transaction templates with functional
constraints
® Allocation problem:
® given a set of transactions 7 and a set of isolation levels Sz: assign
isolation levels to transactions such that serializability is guaranteed
and performance is optimal.
® addressed by [Fekete, 2005] for SI and S2PL.
® Quantifying non-robustness:

® Probabilistically: How likely is it that an allowed schedule is not
serializable? (e.g., [Fekete et al., 2009])

® Characterize non-serializable schedules (e.g., to help debug anomalies
caused by using weaker isolation levels [Gan et al., 2020])

® Robustness for distributed transactions

F. Neven Robustness against MVRC 52/

Database concurrency control

A personal reflection

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)

® Relevant and challenging open questions

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)

® Relevant and challenging open questions

® Classical DB theory (deserves more attention from PODS)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)

® Relevant and challenging open questions

® Classical DB theory (deserves more attention from PODS)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)
® Relevant and challenging open questions
® Classical DB theory (deserves more attention from PODS)

F. Neven Robustness against MVRC 53 / 54

Database concurrency control

A personal reflection

® From practice to theory (there and back again?)

® Relevant and challenging open questions
® Classical DB theory (deserves more attention from PODS)

® |t is not that easy to get into, but | hope you will :-)

F. Neven Robustness against MVRC 53 / 54

Thank you for your attention

Work in collaboration with

i

Bas Ketsman Christoph Koch Brecht Vandevoort
Vrije Universiteit Brussel ~ EPFL Universiteit Hasselt

F. Neven Robustness against MVRC 54 / 54

References |

» Alomari, M., Cahill, M., Fekete, A., and Rohm, U. (2008).
The cost of serializability on platforms that use snapshot isolation.
In ICDE, pages 576-585.

» Alomari, M. and Fekete, A. (2015).
Serializable use of read committed isolation level.
In AICCSA, pages 1-8.

» Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, |.
(2013).

HAT, not CAP: Towards highly available transactions.
In USENIX HotOS, pages 24-24.

» Beillahi, S. M., Bouajjani, A., and Enea, C. (2019a).
Checking robustness against snapshot isolation.
In CAV, pages 286-304.

F. Neven Robustness against MVRC 54 / 54

References |l

» Beillahi, S. M., Bouajjani, A., and Enea, C. (2019b).
Robustness against transactional causal consistency.
In CONCUR, pages 1-18.

» Bernardi, G. and Gotsman, A. (2016).
Robustness against consistency models with atomic visibility.
In CONCUR, pages 7:1-7:15.

» Cerone, A. and Gotsman, A. (2018).
Analysing snapshot isolation.
J.ACM, 65(2):1-41.

» Cerone, A., Gotsman, A., and Yang, H. (2017).
Algebraic Laws for Weak Consistency.
In CONCUR, pages 26:1-26:18.

F. Neven Robustness against MVRC 54 / 54

References 1l

» Fekete, A. (2005).
Allocating isolation levels to transactions.
In PODS, pages 206—215.

» Fekete, A., Liarokapis, D., O'Neil, E. J., O'Neil, P. E., and Shasha,
D. E. (2005).

Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492-528.

» Fekete, A. D., Goldrei, S., and Asenjo, J. P. (2009).
Quantifying isolation anomalies.
PVLDB, 2(1):467-478.

» Gan, Y., Ren, X., Ripberger, D., Blanas, S., and Wang, Y. (2020).
Isodiff: Debugging anomalies caused by weak isolation.
Proc. VLDB Endow., 13(11):2773—2786.

F. Neven Robustness against MVRC 54 / 54

References IV

» Ketsman, B., Koch, C., Neven, F., and Vandevoort, B. (2020).
Deciding robustness for lower SQL isolation levels.
In PODS, pages 315-330.

» Papadimitriou, C. H. (1986).
The Theory of Database Concurrency Control.
Computer Science Press.

» Vandevoort, B., Ketsman, B., Koch, C., and Neven, F. (2021).
Robustness against read committed for transaction templates.
PVLDB, 14(11):2141-2153.

» Vandevoort, B., Ketsman, B., Koch, C., and Neven, F. (2022).
Robustness against read committed for transaction templates with
functional constraints.

ICDT 2022.

F. Neven Robustness against MVRC 54 / 54

	Database Concurrency Control (101)
	Serializability
	Isolation Levels
	Robustness

	Robustness for Transactions
	Snapshot Isolation
	Multiversion Read Committed

	Robustness for Transaction Templates
	Transaction Templates
	Functional Constraints
	Limitations

	Conclusions

